Detectan ondas gravitacionales predichas por Albert Einstein

Viernes 12 de febrero de 2016
Equipos internacionales de investigadores anunciaron ayer la primera detección directa de ondas gravitacionales, un avance mayúsculo para la física que abre una nueva ventana al Universo y sus misterios.
El descubrimiento, develado en una conferencia de prensa en Washington, corona esfuerzos de décadas y confirma una predicción efectuada por Albert Einstein en su teoría general de la relatividad de 1915.
"Detectamos las ondas gravitacionales, lo logramos", dijo entre aplausos David Reitze, físico de Caltech (California Institute of Technology) y director del laboratorio Ligo (Laser Interferometer Gravitational-wave Observatory).
Las ondas fueron detectadas en septiembre tras 50 años de esfuerzos, gracias a los instrumentos del Ligo, que miden cada uno cuatro kilómetros.
"Esta detección es el comienzo de una nueva era; la era de la astronomía de las ondas gravitacionales ya es una realidad", dijo de su lado la científica argentina Gabriela González, portavoz del equipo Ligo y profesora de astrofísica en la universidad estatal de Luisiana (sur).
"Gracias a este descubrimiento, la humanidad se embarca en la maravillosa exploración de los lugares más extremos del Universo, donde se forman objetos y fenómenos por la deformación del espacio-tiempo", añadió Kip Thorne, profesor de física teórica en Caltech.
France Cordova, directora de la Fundación Nacional Estadounidense de Ciencias (National Science Foundation), que financia el laboratorio Ligo, explicó que esta observación "marca el nacimiento de un dominio enteramente nuevo de la astrofísica, comparable al momento en que Galileo apuntó por primera vez su telescopio hacia el cielo" en el siglo XVII.
El hallazgo fue realizado en colaboración con equipos científicos europeos, particularmente de Francia, Italia y Alemania.
Las ondas gravitacionales son producidas por perturbaciones en la trama del espacio-tiempo por los efectos del desplazamiento de un objeto de enorme masa. Estas perturbaciones se desplazan a la velocidad de la luz en la forma de ondas y nada las detiene.
Este fenómeno, suele ser representado como la deformación que ocurre cuando un peso reposa sobre una red. En este caso, la red representa el entramado espacio-tiempo.
Histórico descubrimiento
El físico Benoit Mours, del CNRS, consideró que el descubrimiento era "histórico" porque permite "verificar de forma directa una de las predicciones de la teoría general de la relatividad".
Por este descubrimiento, los físicos han determinado que las ondas gravitacionales detectadas en septiembre nacieron en la última fracción de segundo antes de la fusión de dos agujeros negros, objetos celestes aún misteriosos que resultan del colapso gravitacional de enormes estrellas. La posibilidad de una colisión entre estos cuerpos había sido predicha por Einstein, pero el fenómeno jamás había sido observado.
De acuerdo con la teoría general de la relatividad, un par de agujeros negros en que cada uno orbita en torno al otro pierde energía, produciendo las ondas gravitacionales. Son estas ondas las que fueron detectadas el 14 de septiembre del año pasado, exactamente a las 16H51 GMT.
"Momento increíble"
Fue un momento increíble, contó David Reitze: "No lo podía creer. Era demasiado bueno para ser cierto".
El análisis de los datos permitió determinar que esos dos agujeros negros se fusionaron hace unos 1.300 millones de años. Cada uno de ellos era entre 29 y 36 veces más masivos que el sol, con un diámetro de sólo 150 kilómetros.
La comparación de los momentos de llegada de las ondas gravitacionales a los dos detectores Ligo (7,1 milisegundos de diferencia) distantes 3.000 kilómetros uno del otro, y el estudio de las características de las señales medidas, confirmaron la detección.
Los científicos apuntan que la fuente de las ondas estuvo probablemente en el hemisferio sur del cielo, pero un mayor número de detectores habría permitido establecer una localización más precisa.
"Las primeras aplicaciones que vemos ahora son para los agujeros negros, porque no emiten luz y no los podríamos ver sin las ondas gravitacionales", dijo el astrofísico David Shoemaker, responsable de Ligo en el Instituto de Tecnología de Massachussetts (MIT), añadiendo que por el momento se ignora cómo crecen estos objetos, que se hallan en el centro de casi todas las galaxias.
Por ello, "las ondas gravitacionales pueden ayudar a explicar la formación de las galaxias", dijo Shoemaker.
"La gravedad es la fuerza que controla el Universo y el hecho de poder ver sus radiaciones nos permite observar los fenómenos más violentos y fundamentales del cosmos, que de otra forma son imposibles de observar", dijo a la AFP Tuck Stebbins, jefe del laboratorio de astrofísica gravitacional del centro Goddard de la Nasa.
El hecho de poder detectar estas ondas que viajan sin perturbación por millones de años torna posible remontarse al primer milisegundo del llamado Big Bang.
El descubrimiento suscito gran emoción en la comunidad científica mundial. El profesor de física Tom McLeish, de la Royal Society de Londres y de la Universidad de Durham, declaró que esta noticia lo llena de alegría.
"El último anuncio de una importancia similar se remonta a 1888, cuando Heinrich Hertz detectó las ondas de radio predichas por James Clerk Maxwell en las ecuaciones sobre electromagnetismo en el año 1865", escribió.

Una científica argentina protagonista

Una de las protagonistas de la detección de ondas gravitacionales previstas por Einstein en su teoría de la relatividad general, es nada menos que la doctora Gabriela González, formada en la Universidad de Córdoba y casada con un físico egresado del Balseiro, Jorge Pullin.
Gaby, como la llamaron ayer durante la conferencia de prensa en Washington en la que se anunció este hito de la ciencia, dedicó toda su carrera a la búsqueda de este fenómeno que abre una nueva era en la cosmología. De algún modo, la gravitación también los atrajo uno al otro, porque se conocieron cuando él participó de un seminario sobre el tema en Córdoba.
Una vez graduada, ambos obtuvieron posiciones en la Universidad de Syracuse, Estados Unidos, cerca de Nueva York: Jorge para un posdoctorado y Gaby para hacer su doctorado. Pero como suele suceder en el mundo científico, después de dos años se vieron obligados a aceptar puestos en diferentes ciudades. Él viajó a Utah y ella, a Boston, donde trabajó en el MIT, a diez horas de distancia. Para poder dedicarse a su vocación, tuvieron que vivir seis años en distinta ciudad, según ellos mismos contaron en una nota firmada por Valerie Jamieson para Physics World.



¿Qué son las ondas gravitacionales?
Una onda gravitacional es una ondulación ínfima del espacio-tiempo que se propaga en el Universo a la velocidad de la luz. Fueron presentadas conceptualmente hace 100 años por Albert Einstein, el célebre físico, como una consecuencia de su teoría de la relatividad general.
Einstein describe la gravedad como una deformación del espacio.
Las masas, como el sol por ejemplo, curvan el espacio.
Un poco como cuando alguien se sube en una cama elástica.
Si las masas son pequeñas, la deformación es débil (una uva en una cama elástica no la altera). Si las masas son grandes, la deformación es importante (una persona sobre una cama, deforma la tela elástica).
Si las masas se desplazan y tienen una aceleración, esas deformaciones se desplazan y se propagan a través del espacio, formando ondas gravitacionales.
Para ilustrar esas oscilaciones se emplea a menudo la imagen de las ondas que se propagan en la superficie de un lago cuando se arroja una piedra.
Cuanto más lejos, la onda se va debilitando.
Las ondas gravitacionales que se buscan son las producidas por fenómenos astrofísicos violentos como la fusión de dos agujeros negros o la explosión de estrellas masivas.
Las otras son muy minúsculas como para que podamos observarlas.
Pero nos rodean sin que seamos conscientes de ello y sin consecuencias para nosotros.
Una prueba indirecta de la existencia de las ondas gravitacionales había sido producida por el descubrimiento, en 1974, de un púlsar y de una estrella de neutrones que rotaban una en torno de la otra a alta velocidad. Russell Hulse y Joseph Taylor ganaron el premio Nobel de Física de 1993 por este hallazgo.
El descubrimiento de las ondas gravitacionales fue publicado en la revista estadounidense Physical Review Letters.